Conduction and shape factors (ht.conduction)¶
- ht.conduction.R_cylinder(Di, Do, k, L)[source]¶
Returns the thermal resistance R of a cylinder of constant thermal conductivity k, of inner and outer diameter Di and Do, and with a length L.
$(hA)_{\text{cylinder}}=\frac{k}{\ln(D_o/D_i)} \cdot 2\pi L\\ R_{\text{cylinder}}=\frac{1}{(hA)_{\text{cylinder}}}= \frac{\ln(D_o/D_i)}{2\pi Lk}$- Parameters
- Returns
- R
float
Thermal resistance [K/W]
- R
References
- 1
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> R_cylinder(0.9, 1., 20, 10) 8.38432343682705e-05
- ht.conduction.R_to_k(R, t, A=1.0)[source]¶
Returns the thermal conductivity of a substance given its thickness and thermal resistance.
$k = \frac{t}{RA}$- Parameters
- Returns
- k
float
Thermal conductivity of a substance [W/m/K]
- k
Notes
When solving problems of changing areas, this value may be calculated with an area other than 1 m^2. Values in tables reported as properties of materials are often divided by area already; the conversion holds if A is 1.
References
- 1
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> R_to_k(R=0.05, t=0.025) 0.5
- ht.conduction.R_value_to_k(R_value, SI=True)[source]¶
Returns the thermal conductivity of a substance given its R-value, which can be in either SI units of m^2 K/(W*inch) or the Imperial units of ft^2 deg F*h/(BTU*inch).
- Parameters
- Returns
- k
float
Thermal conductivity of a substance [W/m/K]
- k
Notes
If given input is SI, it is divided by 0.0254 (multiplied by 39.37) and then inversed. Otherwise, it is multiplied by 6.93347 and then inversed.
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
Examples
>>> R_value_to_k(0.12), R_value_to_k(0.71, SI=False) (0.2116666666666667, 0.20313787163983468)
>>> R_value_to_k(1., SI=False)/R_value_to_k(1.) 5.678263341113488
- ht.conduction.S_isothermal_pipe_eccentric_to_isothermal_pipe(D1, D2, Z, L=1.0)[source]¶
Returns the Shape factor S of a pipe of constant outer temperature and of outer diameter D1 which is Z distance from the center of another pipe of outer diameter`D2`. Length L must be provided, but can be set to 1 to obtain a dimensionless shape factor used in some sources.
$S = \frac{2\pi L}{\cosh^{-1} \left(\frac{D_2^2 + D_1^2 - 4Z^2}{2D_1D_2}\right)}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
L should be much larger than both diameters. D2 should be larger than D1.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_pipe_eccentric_to_isothermal_pipe(.1, .4, .05, 10) 47.709841915608976
- ht.conduction.S_isothermal_pipe_normal_to_plane(D, L)[source]¶
Returns the Shape factor S of a pipe of constant outer temperature and of outer diameter D which extends into an infinite medium below an an infinite plane.
$S = \frac{2\pi L}{\ln(4L/D)}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
L should be much larger than D.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_pipe_normal_to_plane(1, 100) 104.86893910124888
- ht.conduction.S_isothermal_pipe_to_isothermal_pipe(D1, D2, W, L=1.0)[source]¶
Returns the Shape factor S of a pipe of constant outer temperature and of outer diameter D1 which is w distance from another infinite pipe of outer diameter`D2`. Length L must be provided, but can be set to 1 to obtain a dimensionless shape factor used in some sources.
$S = \frac{2\pi L}{\cosh^{-1}\left(\frac{4w^2-D_1^2-D_2^2}{2D_1D_2}\right)}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
L should be much larger than both diameters. L should be larger than W.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_pipe_to_isothermal_pipe(.1, .2, 1, 1) 1.188711034982268
- ht.conduction.S_isothermal_pipe_to_plane(D, Z, L=1)[source]¶
Returns the Shape factor S of a pipe of constant outer temperature and of outer diameter D which is Z distance from an infinite plane. Length L must be provided, but can be set to 1 to obtain a dimensionless shape factor used in some sources.
$S = \frac{2\pi L}{\cosh^{-1}(2z/D)}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
L should be much larger than D.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_pipe_to_plane(1, 100, 3) 3.146071454894645
- ht.conduction.S_isothermal_pipe_to_two_planes(D, Z, L=1.0)[source]¶
Returns the Shape factor S of a pipe of constant outer temperature and of outer diameter D which is Z distance from two infinite isothermal planes of equal temperatures, parallel to each other and enclosing the pipe. Length L must be provided, but can be set to 1 to obtain a dimensionless shape factor used in some sources.
$S = \frac{2\pi L}{\ln\frac{8z}{\pi D}}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
L should be much larger than both diameters. L should be larger than W.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Shape Factors for Heat Conduction Through Bodies with Isothermal or Convective Boundary Conditions, J. E. Sunderland, K. R. Johnson, ASHRAE Transactions, Vol. 70, 1964.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_pipe_to_two_planes(.1, 5, 1) 1.2963749299921428
- ht.conduction.S_isothermal_sphere_to_plane(D, Z)[source]¶
Returns the Shape factor S of a sphere of constant temperature and of outer diameter D which is Z distance from an infinite plane.
$S = \frac{2\pi D}{1 - \frac{D}{4Z}}$- Parameters
- Returns
- S
float
Shape factor [m]
- S
Notes
No restrictions on the use of this equation.
$Q = Sk(T_1 - T_2) \\ R_{\text{shape}}=\frac{1}{Sk}$References
- 1
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 2
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> S_isothermal_sphere_to_plane(1, 100) 6.298932638776527
- ht.conduction.cylindrical_heat_transfer(Ti, To, hi, ho, Di, ts, ks)[source]¶
Calculation for the heat transfer through a cylindrical wall, as occurs in pipes and cylindrical vessels. This is the core method which calculates the temperatures of each layer - and allows an outer layer to iterate on temperature or duty to meet a fixed specification, or include things like temperature dependent thermal conductivities or radiation.
- Parameters
- Ti
float
Temperature of the inside of the cylinder, [K]
- To
float
External temperature outside the cylinder, away from the cylinder wall, [K]
- hi
float
Inside heat transfer coefficient, [W/m^2/K]
- ho
float
Outside heat transfer coefficient, [W/m^2/K]
- Di
float
Inside diameter of cylinder, [m]
- ts
list
[float
] List of thicknesses of each layer of the cylinder, [m]
- ks
list
[float
] List of thermal conductivities of each layer of the cylinder, [w/m/K]
- Ti
- Returns
- results
dict
Q : Heat exchanged through the cylinder (per meter of length), [W/m]
Rs : Thermal resistances of each of the layers, [m*K/W]
Ts : Temperatures of the outside of each of the layers, [K]
- UAHeat transfer coefficient times area (on a per-meter of
cylinder) basis, [W/K/m]
- U_innerHeat transfer coefficient with respect to the inside
diameter, [W/K]
- U_outerHeat transfer coefficient with respect to the exterior
diameter, [W/K]
- qSpecific heat exchanged (per square meter) through the cylinder
(per meter of length), [W/m^3]
- results
Examples
>>> from pprint import pprint >>> pprint(cylindrical_heat_transfer(Ti=453.15, To=301.15, hi=1e12, ho=22.697193, Di=0.0779272, ts=[0.0054864, .05], ks=[56.045, 0.0598535265])) {'Q': 73.12000884069367, 'Rs': [0.00022201030738405449, 1.189361782070256], 'Ts': [453.15, 453.1226455779877, 306.578530147744], 'UA': 0.48105268974140575, 'U_inner': 1.9649599487726137, 'U_outer': 0.8106078714663484, 'q': 123.21239646288495}
- ht.conduction.k_to_R(k, t, A=1.0)[source]¶
Returns the thermal resistance of a substance given its thickness and thermal conductivity.
$R = \frac{t}{kA}$- Parameters
- Returns
- R
float
Thermal resistance of a substance [K/W]
- R
Notes
When solving problems of changing areas, this value may be calculated with an area other than 1 m^2. Values in tables reported as properties of materials are often divided by area already; the conversion holds if A is 1.
References
- 1
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
>>> k_to_R(k=0.5, t=0.025) 0.05
- ht.conduction.k_to_R_value(k, SI=True)[source]¶
Returns the R-value of a substance given its thermal conductivity, Will return R-value in SI units unless SI is false. SI units are m^2 K/(W*inch); Imperial units of R-value are ft^2 deg F*h/(BTU*inch).
- Parameters
- Returns
- R_value
float
R-value of a substance [m^2 K/(W*inch) or ft^2 deg F*h/(BTU*inch)]
- R_value
Notes
Provides the reverse conversion of R_value_to_k.
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
Examples
>>> k_to_R_value(R_value_to_k(0.12)), k_to_R_value(R_value_to_k(0.71, SI=False), SI=False) (0.11999999999999998, 0.7099999999999999)
- ht.conduction.k_to_thermal_resistivity(k)[source]¶
Returns the thermal resistivity of a substance given its thermal conductivity.
$r = \frac{1}{k}$- Parameters
- k
float
Thermal conductivity of a substance [W/m/K]
- k
- Returns
- r
float
Thermal resistivity of a substance [m*K/W]
- r
Notes
Do not confuse this with thermal resistance! Often not introduced in heat transfer textbooks to avoid further confusion. Used almost exclusively as a description of solids. Thermal resistivity has different units than R-value, but is of the same dimensionality.
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
Examples
>>> k_to_thermal_resistivity(0.25) 4.0
- ht.conduction.thermal_resistivity_to_k(r)[source]¶
Returns the thermal resistivity of a substance given its thermal conductivity.
$k = \frac{1}{r}$- Parameters
- r
float
Thermal resistivity of a substance [m*K/W]
- r
- Returns
- k
float
Thermal conductivity of a substance [W/m/K]
- k
Notes
Do not confuse this with thermal resistance! Often not introduced in heat as a description of solids. Thermal resistivity has different units than R-value, but is of the same dimensionality.
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
Examples
>>> thermal_resistivity_to_k(4) 0.25