Nucleic boiling and critical heat flux (ht.boiling_nucleic)¶
- ht.boiling_nucleic.Bier(P, Pc, Te=None, q=None)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [1] .
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
No examples of this are known. Seems to give very different results than other correlations.
References
- 1(1,2)
Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat Transfer, 3E. New York: McGraw-Hill, 1998.
Examples
Water boiling at 1 atm, with excess temperature of 4.3 K from [1].
>>> Bier(101325., 22048321.0, Te=4.3) 1290.5349471503353
- ht.boiling_nucleic.Cooper(P, Pc, MW, Te=None, q=None, Rp=1e-06)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- P
float
Saturation pressure of fluid, [Pa]
- Pc
float
Critical pressure of fluid, [Pa]
- MW
float
Molecular weight of fluid, [g/mol]
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- Rp
float
,optional
Roughness parameter of the surface (1 micrometer default) used by Cooper method, [m]
- P
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
Examples 1 and 2 are for water and benzene, from [1]. Roughness parameter is with an old definition. Accordingly, it is not used by the h function. If unchanged, the roughness parameter’s logarithm gives a value of 0.12 as an exponent of reduced pressure.
References
- 1(1,2,3)
Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat Transfer, 3E. New York: McGraw-Hill, 1998.
- 2
M. G. Cooper, “Saturation and Nucleate Pool Boiling: A Simple Correlation,” Inst. Chem. Eng. Syrup. Ser. (86/2): 785, 1984.
- 3
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
Water boiling at 1 atm, with excess temperature of 4.3 K from [1].
>>> Cooper(P=101325., Pc=22048321.0, MW=18.02, Te=4.3) 1558.1435442153575
- ht.boiling_nucleic.Forster_Zuber(rhol, rhog, mul, kl, Cpl, Hvap, sigma, dPsat, Te=None, q=None)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- rhol
float
Density of the liquid [kg/m^3]
- rhog
float
Density of the produced gas [kg/m^3]
- mul
float
Viscosity of liquid [Pa*s]
- kl
float
Thermal conductivity of liquid [W/m/K]
- Cpl
float
Heat capacity of liquid [J/kg/K]
- Hvap
float
Heat of vaporization of the fluid at P, [J/kg]
- sigma
float
Surface tension of liquid [N/m]
- dPsat
float
Difference in saturation pressure of the fluid at Te and T, [Pa]
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- rhol
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
Examples have been found in [1] and [3] and match exactly.
References
- 1(1,2,3)
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 2
Forster, H. K., and N. Zuber. “Dynamics of Vapor Bubbles and Boiling Heat Transfer.” AIChE Journal 1, no. 4 (December 1, 1955): 531-35. doi:10.1002/aic.690010425.
- 3
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
Water boiling, with excess temperature of 4.3K from [1].
>>> Forster_Zuber(Te=4.3, dPsat=3906*4.3, Cpl=4180., kl=0.688, ... mul=0.275E-3, sigma=0.0588, Hvap=2.25E6, rhol=958., rhog=0.597) 3519.9239897462644
- ht.boiling_nucleic.Gorenflo(P, Pc, q=None, Te=None, CASRN=None, h0=None, Ra=4e-07)[source]¶
Calculates heat transfer coefficient for a pool boiling according to [1] and also presented in [2]. Calculation is based on the corresponding states law, with a single regression constant per fluid. P and Pc are always required.
Either q or Te may be specified. Either CASRN or h0 may be specified as well. If CASRN is specified and the fluid is not in the list of those studied, an error is raises.
For fluids other than water:
For water:
- Parameters
- P
float
Saturation pressure of fluid, [Pa]
- Pc
float
Critical pressure of fluid, [Pa]
- q
float
,optional
Heat flux, [W/m^2]
- Te
float
,optional
Excess wall temperature, [K]
- CASRN
str
,optional
CASRN of fluid
- h0
float
Reference heat transfer coefficient for Gorenflo method, [W/m^2/K]
- Ra
float
,optional
Roughness parameter of the surface (0.4 micrometer default) for Gorenflo method, [m]
- P
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
A more recent set of reference heat fluxes is available. Where a range of values was listed for reference heat fluxes in [1], values from the second edition of [1] were used instead. 44 values are available, all listed in the dictionary h0_Gorenflow_1993. Values range from 2000 to 24000 W/m^2/K.
References
- 1(1,2,3)
Schlunder, Ernst U, VDI. VDI Heat Atlas. Dusseldorf: V.D.I. Verlag, 1993. http://digital.ub.uni-paderborn.de/hs/download/pdf/41898?originalFilename=true
- 2
Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. “Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels.” Nanoscale and Microscale Thermophysical Engineering 12, no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
Examples
Water boiling at 3 bar and a heat flux of 2E4 W/m^2/K.
>>> Gorenflo(3E5, 22048320., q=2E4, CASRN='7732-18-5') 3043.344595525422
- ht.boiling_nucleic.HEDH_Montinsky(P, Pc)[source]¶
Calculates critical heat flux in the nucleate boiling regime according to [3] as presented in [1], using an expression modified from [2].
- Parameters
- Returns
- q
float
Critical heat flux [W/m^2]
- q
Notes
No further work is required. Units of Pc are kPa internally.
References
- 1
Schlünder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1987.
- 2
Mostinsky I. L.: “Application of the rule of corresponding states for the calculation of heat transfer and critical heat flux,” Teploenergetika 4:66, 1963 English Abstr. Br Chem Eng 8(8):586, 1963
- 3(1,2)
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
Example is from [3] and matches to within the error of the algebraic manipulation rounding.
>>> HEDH_Montinsky(P=310.3E3, Pc=2550E3) 398405.66545181436
- ht.boiling_nucleic.HEDH_Taborek(P, Pc, Te=None, q=None)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to Taborek (1986) as described in [1] and as presented in [2]. Modification of [3].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
Example is from [3] and matches to within the error of the algebraic manipulation rounding.
References
- 1
Schlünder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1987.
- 2
Mostinsky I. L.: “Application of the rule of corresponding states for the calculation of heat transfer and critical heat flux,” Teploenergetika 4:66, 1963 English Abstr. Br Chem Eng 8(8):586, 1963
- 3(1,2)
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
>>> HEDH_Taborek(Te=16.2, P=310.3E3, Pc=2550E3) 1397.272486525486
- ht.boiling_nucleic.McNelly(rhol, rhog, kl, Cpl, Hvap, sigma, P, Te=None, q=None)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- rhol
float
Density of the liquid [kg/m^3]
- rhog
float
Density of the produced gas [kg/m^3]
- kl
float
Thermal conductivity of liquid [W/m/K]
- Cpl
float
Heat capacity of liquid [J/kg/K]
- Hvap
float
Heat of vaporization of the fluid at P, [J/kg]
- sigma
float
Surface tension of liquid [N/m]
- P
float
Saturation pressure of fluid, [Pa]
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- rhol
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
Further examples for this function are desired.
References
- 1
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 2
McNelly M. J.: “A correlation of the rates of heat transfer to n ucleate boiling liquids,” J. Imp Coll. Chem Eng Soc 7:18, 1953.
Examples
Water boiling, with excess temperature of 4.3 K.
>>> McNelly(Te=4.3, P=101325, Cpl=4180., kl=0.688, sigma=0.0588, ... Hvap=2.25E6, rhol=958., rhog=0.597) 533.8056972951352
- ht.boiling_nucleic.Montinsky(P, Pc, Te=None, q=None)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
Formulas has been found consistent in all cited sources. Examples have been found in [1] and [3].
The equation for this function is sometimes given with a constant of 3.7E-5 instead of 0.00417 if critical pressure is not internally converted to kPa. [3] lists a constant of 3.596E-5.
References
- 1(1,2,3)
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 2
Mostinsky I. L.: “Application of the rule of corresponding states for the calculation of heat transfer and critical heat flux,” Teploenergetika 4:66, 1963 English Abstr. Br Chem Eng 8(8):586, 1963
- 3(1,2)
Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat Transfer, 3E. New York: McGraw-Hill, 1998.
- 4
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
Water boiling at 1 atm, with excess temperature of 4.3K from [1].
>>> Montinsky(P=101325, Pc=22048321, Te=4.3) 1185.0509770292663
- ht.boiling_nucleic.Rohsenow(rhol, rhog, mul, kl, Cpl, Hvap, sigma, Te=None, q=None, Csf=0.013, n=1.7)[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1].
Either heat flux or excess temperature is required.
With Te specified:
With q specified:
- Parameters
- rhol
float
Density of the liquid [kg/m^3]
- rhog
float
Density of the produced gas [kg/m^3]
- mul
float
Viscosity of liquid [Pa*s]
- kl
float
Thermal conductivity of liquid [W/m/K]
- Cpl
float
Heat capacity of liquid [J/kg/K]
- Hvap
float
Heat of vaporization of the fluid at P, [J/kg]
- sigma
float
Surface tension of liquid [N/m]
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- Csf
float
Rohsenow coefficient specific to fluid and metal [-]
- n
float
Constant, 1 for water, 1.7 (default) for other fluids usually [-]
- rhol
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
No further work is required on this correlation. Multiple sources confirm its form and rearrangement.
References
- 1
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 2
Rohsenow, Warren M. “A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids.” Technical Report. Cambridge, Mass. : M.I.T. Division of Industrial Cooporation, 1951
Examples
h for water at atmospheric pressure on oxidized aluminum.
>>> Rohsenow(rhol=957.854, rhog=0.595593, mul=2.79E-4, kl=0.680, Cpl=4217, ... Hvap=2.257E6, sigma=0.0589, Te=4.9, Csf=0.011, n=1.26) 3723.655267067467
- ht.boiling_nucleic.Serth_HEDH(D, sigma, Hvap, rhol, rhog)[source]¶
Calculates critical heat flux for nucleic boiling of a tube bundle according to [2], citing [3], and using [1] as the original form.
- Parameters
- Returns
- q:
float
Critical heat flux [W/m^2]
- q:
Notes
A further source for this would be nice.
References
- 1
Zuber N. “On the stability of boiling heat transfer”. Trans ASME 1958 80:711-20.
- 2
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
- 3
Schlünder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1987.
Examples
>>> Serth_HEDH(D=0.0127, sigma=8.2E-3, Hvap=272E3, rhol=567, rhog=18.09) 351867.46522901946
- ht.boiling_nucleic.Stephan_Abdelsalam(rhol, rhog, mul, kl, Cpl, Hvap, sigma, Tsat, Te=None, q=None, kw=401.0, rhow=8.96, Cpw=384.0, angle=None, correlation='general')[source]¶
Calculates heat transfer coefficient for a evaporator operating in the nucleate boiling regime according to [2] as presented in [1]. Five variants are possible.
Either heat flux or excess temperature is required. The forms for Te are not shown here, but are similar to those of the other functions.
Respectively, the following four correlations are for water, hydrocarbons, cryogenic fluids, and refrigerants.
- Parameters
- rhol
float
Density of the liquid [kg/m^3]
- rhog
float
Density of the produced gas [kg/m^3]
- mul
float
Viscosity of liquid [Pa*s]
- kl
float
Thermal conductivity of liquid [W/m/K]
- Cpl
float
Heat capacity of liquid [J/kg/K]
- Hvap
float
Heat of vaporization of the fluid at P, [J/kg]
- sigma
float
Surface tension of liquid [N/m]
- Tsat
float
Saturation temperature at operating pressure [Pa]
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- kw
float
,optional
Thermal conductivity of wall (only for cryogenics) [W/m/K]
- rhow
float
,optional
Density of the wall (only for cryogenics) [kg/m^3]
- Cpw
float
,optional
Heat capacity of wall (only for cryogenics) [J/kg/K]
- angle
float
,optional
Contact angle of bubble with wall [degrees]
- correlation
str
,optional
Any of ‘general’, ‘water’, ‘hydrocarbon’, ‘cryogenic’, or ‘refrigerant’
- rhol
- Returns
- h
float
Heat transfer coefficient [W/m^2/K]
- h
Notes
If cryogenic correlation is selected, metal properties are used. Default values are the properties of copper at STP.
The angle is selected automatically if a correlation is selected; if angle is provided anyway, the automatic selection is ignored. A IndexError exception is raised if the correlation is not in the dictionary _angles_Stephan_Abdelsalam.
References
- 1
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 2
Stephan, K., and M. Abdelsalam. “Heat-Transfer Correlations for Natural Convection Boiling.” International Journal of Heat and Mass Transfer 23, no. 1 (January 1980): 73-87. doi:10.1016/0017-9310(80)90140-4.
- 3
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
Examples
Example is from [3] and matches.
>>> Stephan_Abdelsalam(Te=16.2, Tsat=437.5, Cpl=2730., kl=0.086, mul=156E-6, ... sigma=0.0082, Hvap=272E3, rhol=567, rhog=18.09, angle=35) 26722.441071108373
- ht.boiling_nucleic.Zuber(sigma, Hvap, rhol, rhog, K=0.18)[source]¶
Calculates critical heat flux for nucleic boiling of a flat plate or other shape as presented in various sources. K = pi/24 is believed to be the original [1] value for K, but 0.149 is now more widely used, a value claimed to be from [2] according to [5]. Cao [4] lists a value of 0.18 for K. The Wolverine Tube data book also lists a value of 0.18, and so it is the default.
- Parameters
- Returns
- q:
float
Critical heat flux [W/m^2]
- q:
Notes
No further work is required on this correlation. Multiple sources confirm its form.
References
- 1
Zuber N. “On the stability of boiling heat transfer”. Trans ASME 1958 80:711-20.
- 2
Lienhard, J.H., and Dhir, V.K., 1973, Extended Hydrodynamic Theory of the Peak and Minimum Heat Fluxes, NASA CR-2270.
- 3
Serth, R. W., Process Heat Transfer: Principles, Applications and Rules of Thumb. 2E. Amsterdam: Academic Press, 2014.
- 4
Cao, Eduardo. Heat Transfer in Process Engineering. McGraw Hill Professional, 2009.
- 5
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer, 7E.Mason, OH: Cengage Learning, 2010.
Examples
Example from [3]
>>> Zuber(sigma=8.2E-3, Hvap=272E3, rhol=567, rhog=18.09, K=0.149) 444307.22304342285 >>> Zuber(sigma=8.2E-3, Hvap=272E3, rhol=567, rhog=18.09, K=0.18) 536746.9808578263
- ht.boiling_nucleic.h_nucleic(Te=None, q=None, Tsat=None, P=None, dPsat=None, Cpl=None, kl=None, mul=None, rhol=None, sigma=None, Hvap=None, rhog=None, MW=None, Pc=None, Csf=0.013, n=1.7, kw=401.0, rhow=8.96, Cpw=384.0, angle=35.0, Rp=1e-06, Ra=4e-07, h0=None, CAS=None, Method=None)[source]¶
This function handles the calculation of nucleate boiling heat flux and chooses the best method for performing the calculation based on the provided information.
One of Te and q are always required.
- Parameters
- Te
float
,optional
Excess wall temperature, [K]
- q
float
,optional
Heat flux, [W/m^2]
- Tsat
float
,optional
Saturation temperature at operating pressure [Pa]
- P
float
,optional
Saturation pressure of fluid, [Pa]
- dPsat
float
,optional
Difference in saturation pressure of the fluid at Te and T, [Pa]
- Cpl
float
,optional
Heat capacity of liquid [J/kg/K]
- kl
float
,optional
Thermal conductivity of liquid [W/m/K]
- mul
float
,optional
Viscosity of liquid [Pa*s]
- rhol
float
,optional
Density of the liquid [kg/m^3]
- sigma
float
,optional
Surface tension of liquid [N/m]
- Hvap
float
,optional
Heat of vaporization of the fluid at P, [J/kg]
- rhog
float
,optional
Density of the produced gas [kg/m^3]
- MW
float
,optional
Molecular weight of fluid, [g/mol]
- Pc
float
,optional
Critical pressure of fluid, [Pa]
- Csf
float
,optional
Rohsenow coefficient specific to fluid and metal [-]
- n
float
,optional
Rohsenow constant, 1 for water, 1.7 (default) for other fluids usually [-]
- kw
float
,optional
Thermal conductivity of wall (only for cryogenics) [W/m/K]
- rhow
float
,optional
Density of the wall (only for cryogenics) [kg/m^3]
- Cpw
float
,optional
Heat capacity of wall (only for cryogenics) [J/kg/K]
- angle
float
,optional
Contact angle of bubble with wall [degrees]
- Rp
float
,optional
Roughness parameter of the surface (1 micrometer default) used by Cooper method, [m]
- Ra
float
,optional
Roughness parameter of the surface (0.4 micrometer default) for Gorenflo method, [m]
- h0
float
Reference heat transfer coefficient for Gorenflo method, [W/m^2/K]
- CAS
str
,optional
CAS of fluid
- Te
- Returns
- h
float
Nucleate boiling heat flux [W/m^2]
- h
- Other Parameters
- Method
str
,optional
The name of the method to use; one of [‘Gorenflo (1993)’, ‘Stephan-Abdelsalam water’, ‘Stephan-Abdelsalam cryogenic’, ‘Stephan-Abdelsalam’, ‘HEDH-Taborek’, ‘Forster-Zuber’, ‘Rohsenow’, ‘Cooper’, ‘Bier’, ‘Montinsky’, ‘McNelly’]
- Method
Notes
The methods Stephan-Abdelsalam, Cooper, and Gorenflo all take other arguments as well such as surface roughness or the thermal properties of the wall material. See them for their documentation. These parameters can also be passed as keyword arguments.
>>> h_nucleic(P=3E5, Pc=22048320., q=2E4, CAS='7732-18-5', Ra=1E-6) 3437.7726419934147
Examples
Water boiling at 3 bar and a heat flux of 2E4 W/m^2/K.
>>> h_nucleic(P=3E5, Pc=22048320., q=2E4, CAS='7732-18-5') 3043.344595525422
Water, known excess temperature of 4.9 K, Rohsenow method
>>> h_nucleic(rhol=957.854, rhog=0.595593, mul=2.79E-4, kl=0.680, Cpl=4217, ... Hvap=2.257E6, sigma=0.0589, Te=4.9, Csf=0.011, n=1.26, ... Method='Rohsenow') 3723.655267067467
- ht.boiling_nucleic.h_nucleic_methods(Te=None, Tsat=None, P=None, dPsat=None, Cpl=None, kl=None, mul=None, rhol=None, sigma=None, Hvap=None, rhog=None, MW=None, Pc=None, CAS=None, check_ranges=False)[source]¶
This function returns the names of correlations for nucleate boiling heat flux.
- Parameters
- Te
float
,optional
Excess wall temperature, [K]
- Tsat
float
,optional
Saturation temperature at operating pressure [Pa]
- P
float
,optional
Saturation pressure of fluid, [Pa]
- dPsat
float
,optional
Difference in saturation pressure of the fluid at Te and T, [Pa]
- Cpl
float
,optional
Heat capacity of liquid [J/kg/K]
- kl
float
,optional
Thermal conductivity of liquid [W/m/K]
- mul
float
,optional
Viscosity of liquid [Pa*s]
- rhol
float
,optional
Density of the liquid [kg/m^3]
- sigma
float
,optional
Surface tension of liquid [N/m]
- Hvap
float
,optional
Heat of vaporization of the fluid at P, [J/kg]
- rhog
float
,optional
Density of the produced gas [kg/m^3]
- MW
float
,optional
Molecular weight of fluid, [g/mol]
- Pc
float
,optional
Critical pressure of fluid, [Pa]
- CAS
str
,optional
CAS of fluid
- check_rangesbool,
optional
Whether or not to return only correlations suitable for the provided data, [-]
- Te
- Returns
Examples
>>> h_nucleic_methods(P=3E5, Pc=22048320., Te=4.0, CAS='7732-18-5') ['Gorenflo (1993)', 'HEDH-Taborek', 'Bier', 'Montinsky']
- ht.boiling_nucleic.qmax_boiling(rhol=None, rhog=None, sigma=None, Hvap=None, D=None, P=None, Pc=None, Method=None)[source]¶
This function handles the calculation of nucleate boiling critical heat flux and chooses the best method for performing the calculation.
Preferred methods are ‘Serth-HEDH’ when a tube diameter is specified, and ‘Zuber’ otherwise.
- Parameters
- rhol
float
,optional
Density of the liquid [kg/m^3]
- rhog
float
,optional
Density of the produced gas [kg/m^3]
- sigma
float
,optional
Surface tension of liquid [N/m]
- Hvap
float
,optional
Heat of vaporization of the fluid at T, [J/kg]
- D
float
,optional
Diameter of tubes [m]
- P
float
,optional
Saturation pressure of fluid, [Pa]
- Pc
float
,optional
Critical pressure of fluid, [Pa]
- rhol
- Returns
- q
float
Nucleate boiling critical heat flux [W/m^2]
- q
- Other Parameters
- Method
str
,optional
A string of the function name to use; one of (‘Serth-HEDH’, ‘Zuber’, or ‘HEDH-Montinsky’)
- Method
Examples
>>> qmax_boiling(D=0.0127, sigma=8.2E-3, Hvap=272E3, rhol=567, rhog=18.09) 351867.46522901946
- ht.boiling_nucleic.qmax_boiling_methods(rhol=None, rhog=None, sigma=None, Hvap=None, D=None, P=None, Pc=None, check_ranges=False)[source]¶
This function returns a list of methods names which can be used to calculate nucleate boiling critical heat flux. Preferred methods are ‘Serth-HEDH’ when a tube diameter is specified, and ‘Zuber’ otherwise.
- Parameters
- rhol
float
,optional
Density of the liquid [kg/m^3]
- rhog
float
,optional
Density of the produced gas [kg/m^3]
- sigma
float
,optional
Surface tension of liquid [N/m]
- Hvap
float
,optional
Heat of vaporization of the fluid at T, [J/kg]
- D
float
,optional
Diameter of tubes [m]
- P
float
,optional
Saturation pressure of fluid, [Pa]
- Pc
float
,optional
Critical pressure of fluid, [Pa]
- check_rangesbool,
optional
Added for Future use only
- rhol
- Returns
- methods
list
List of methods which can be used to calculate qmax with the given inputs
- methods
Examples
>>> qmax_boiling_methods(D=0.0127, sigma=8.2E-3, Hvap=272E3, rhol=567, rhog=18.09) ['Serth-HEDH', 'Zuber']