Free convection to immersed bodies (ht.conv_free_immersed)¶
- ht.conv_free_immersed.Nu_coil_Xin_Ebadian(Pr, Gr, horizontal=False)[source]¶
Calculates Nusselt number for natural convection around a vertical or horizontal helical coil suspended in a fluid without forced convection.
For horizontal cases:
For vertical cases:
- Parameters
- Prfloat
Prandtl number calculated with the film temperature - wall and temperature very far from the coil average, [-]
- Grfloat
Grashof number calculated with the film temperature - wall and temperature very far from the coil average, and using the outer diameter of the coil [-]
- horizontalbool, optional
Whether the coil is horizontal or vertical, [-]
- Returns
- Nufloat
Nusselt number using the outer diameter of the coil and the film temperature, [-]
Notes
This correlation is also reviewed in [2].
References
- 1
Xin, R. C., and M. A. Ebadian. “Natural Convection Heat Transfer from Helicoidal Pipes.” Journal of Thermophysics and Heat Transfer 10, no. 2 (1996): 297-302.
- 2
Prabhanjan, Devanahalli G., Timothy J. Rennie, and G. S. Vijaya Raghavan. “Natural Convection Heat Transfer from Helical Coiled Tubes.” International Journal of Thermal Sciences 43, no. 4 (April 1, 2004): 359-65.
Examples
>>> Nu_coil_Xin_Ebadian(0.7, 2E4, horizontal=False) 4.755689726250451 >>> Nu_coil_Xin_Ebadian(0.7, 2E4, horizontal=True) 5.2148597687849785
- ht.conv_free_immersed.Nu_free_horizontal_plate(Pr, Gr, buoyancy, L=None, W=None, Method=None)[source]¶
This function calculates the heat transfer coefficient for external free convection from a horizontal plate.
Requires at a minimum a fluid’s Prandtl number Pr, and the Grashof number Gr for the system fluid, temperatures, and geometry.
L and W are not used by any correlations presently, but are included for future support.
If no correlation’s name is provided as Method, the ‘VDI’ correlation is selected.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Lfloat, optional
Length of horizontal plate, [m]
- Wfloat, optional
Width of the horizontal plate, [m]
- Returns
- Nufloat
Nusselt number with respect to plate length, [-]
- Other Parameters
- Methodstring, optional
A string of the function name to use, as in the dictionary conv_free_horizontal_plate_methods
Examples
Turbulent example
>>> Nu_free_horizontal_plate(5.54, 3.21e8, buoyancy=True) 203.89681224927565
>>> Nu_free_horizontal_plate(5.54, 3.21e8, buoyancy=True, Method='McAdams') 181.73121274384457
- ht.conv_free_immersed.Nu_free_horizontal_plate_methods(Pr, Gr, buoyancy, L=None, W=None, check_ranges=True)[source]¶
This function returns a list of methods for calculating heat transfer coefficient for external free convection from a verical plate.
Requires at a minimum a fluid’s Prandtl number Pr, and the Grashof number Gr for the system fluid, temperatures, and geometry.
L and W are not used by any correlations presently, but are included for future support.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Lfloat, optional
Length of horizontal plate, [m]
- Wfloat, optional
Width of the horizontal plate, [m]
- check_rangesbool, optional
Whether or not to return only correlations suitable for the provided data, [-]
- Returns
- methodslist[str]
List of methods which can be used to calculate Nu with the given inputs, [-]
Examples
>>> Nu_free_horizontal_plate_methods(0.69, 2.63E9, True) ['VDI', 'McAdams', 'Rohsenow']
- ht.conv_free_immersed.Nu_free_vertical_plate(Pr, Gr, buoyancy=None, H=None, W=None, Method=None)[source]¶
This function calculates the heat transfer coefficient for external free convection from a verical plate.
Requires at a minimum a fluid’s Prandtl number Pr, and the Grashof number Gr for the system fluid (which require T and P to obtain).
L and W are not used by any correlations presently, but are included for future support.
If no correlation’s name is provided as Method, the ‘Churchill’ correlation is selected.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Hfloat, optional
Height of vertical plate, [m]
- Wfloat, optional
Width of the vertical plate, [m]
- Returns
- Nufloat
Nusselt number with respect to plate height, [-]
- Other Parameters
- Methodstring, optional
A string of the function name to use; one of (‘Churchill’, ).
Examples
Turbulent example
>>> Nu_free_vertical_plate(0.69, 2.63E9, False) 147.16185223770603
- ht.conv_free_immersed.Nu_free_vertical_plate_methods(Pr, Gr, H=None, W=None, check_ranges=True)[source]¶
This function returns a list of methods for calculating heat transfer coefficient for external free convection from a verical plate.
Requires at a minimum a fluid’s Prandtl number Pr, and the Grashof number Gr for the system fluid (which require T and P to obtain).
L and W are not used by any correlations presently, but are included for future support.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- Hfloat, optional
Height of vertical plate, [m]
- Wfloat, optional
Width of the vertical plate, [m]
- check_rangesbool, optional
Whether or not to return only correlations suitable for the provided data, [-]
- Returns
- methodslist[str]
List of methods which can be used to calculate Nu with the given inputs, [-]
Examples
>>> Nu_free_vertical_plate_methods(0.69, 2.63E9) ['Churchill']
- ht.conv_free_immersed.Nu_horizontal_cylinder(Pr, Gr, Method=None)[source]¶
This function handles choosing which horizontal cylinder free convection correlation is used. Generally this is used by a helper class, but can be used directly. Will automatically select the correlation to use if none is provided; returns None if insufficient information is provided.
Preferred functions are ‘Morgan’ when discontinuous results are acceptable and ‘Churchill-Chu’ otherwise.
- Parameters
- Prfloat
Prandtl number with respect to film temperature [-]
- Grfloat
Grashof number with respect to cylinder diameter, [-]
- Returns
- Nufloat
Nusselt number with respect to cylinder diameter, [-]
- Other Parameters
- Methodstring, optional
A string of the function name to use, as in the dictionary horizontal_cylinder_correlations
Notes
All fluid properties should be evaluated at the film temperature, the average between the outer surface temperature of the solid, and the fluid temperature far away from the heat transfer interface - normally the same as the temperature before any cooling or heating occurs.
Examples
>>> Nu_horizontal_cylinder(0.72, 1E7) 24.864192615468973
- ht.conv_free_immersed.Nu_horizontal_cylinder_Churchill_Chu(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a horizontal cylinder according to the Churchill-Chu [1] correlation, also presented in [2]. Cylinder must be isothermal; an alternate expression exists for constant heat flux.
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number with respect to cylinder diameter, [-]
- Returns
- Nufloat
Nusselt number with respect to cylinder diameter, [-]
Notes
Although transition from laminar to turbulent is discrete in reality, this equation provides a smooth transition in value from laminar to turbulent. Checked with the original source, which has its powers unsimplified but is equivalent.
[1] recommends 1E-5 as the lower limit for Ra, but no upper limit. [2] suggests an upper limit of 1E12.
References
- 1(1,2)
Churchill, Stuart W., and Humbert H. S. Chu. “Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder.” International Journal of Heat and Mass Transfer 18, no. 9 (September 1975): 1049-53. doi:10.1016/0017-9310(75)90222-7.
- 2(1,2,3)
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
From [2], Example 9.2, matches:
>>> Nu_horizontal_cylinder_Churchill_Chu(0.69, 2.63E9) 139.13493970073597
- ht.conv_free_immersed.Nu_horizontal_cylinder_Kuehn_Goldstein(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a horizontal cylinder according to the Kuehn-Goldstein [1] correlation, also shown in [2]. Cylinder must be isothermal.
- Parameters
- Prfloat
Prandtl number with respect to film temperature [-]
- Grfloat
Grashof number with respect to cylinder diameter, [-]
- Returns
- Nufloat
Nusselt number with respect to cylinder diameter, [-]
Notes
[1] suggests this expression is valid for all cases except low-Pr fluids. [2] suggests no restrictions.
References
- 1(1,2)
Kuehn, T. H., and R. J. Goldstein. “Correlating Equations for Natural Convection Heat Transfer between Horizontal Circular Cylinders.” International Journal of Heat and Mass Transfer 19, no. 10 (October 1976): 1127-34. doi:10.1016/0017-9310(76)90145-9
- 2(1,2)
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_horizontal_cylinder_Kuehn_Goldstein(0.69, 2.63E9) 122.99323525628186
- ht.conv_free_immersed.Nu_horizontal_cylinder_Morgan(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a horizontal cylinder according to the Morgan [1] correlations, a product of a very large review of the literature. Sufficiently common as to be shown in [2]. Cylinder must be isothermal.
Gr min
Gr max
C
n
10E-10
10E-2
0.675
0.058
10E-2
10E2
1.02
0.148
10E2
10E4
0.850
0.188
10E4
10E7
0.480
0.250
10E7
10E12
0.125
0.333
- Parameters
- Prfloat
Prandtl number with respect to film temperature [-]
- Grfloat
Grashof number with respect to cylinder diameter, [-]
- Returns
- Nufloat
Nusselt number with respect to cylinder diameter, [-]
Notes
Most comprehensive review with a new proposed equation to date. Discontinuous among the jumps in range. Blindly runs outside if upper and lower limits without warning.
References
- 1
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 2
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_horizontal_cylinder_Morgan(0.69, 2.63E9) 151.3881997228419
- ht.conv_free_immersed.Nu_horizontal_cylinder_methods(Pr, Gr, check_ranges=True)[source]¶
This function returns a list of correlation names for free convetion to a horizontal cylinder.
Preferred functions are ‘Morgan’ when discontinuous results are acceptable and ‘Churchill-Chu’ otherwise.
- Parameters
- Prfloat
Prandtl number with respect to film temperature [-]
- Grfloat
Grashof number with respect to cylinder diameter, [-]
- check_rangesbool, optional
Whether or not to return only correlations suitable for the provided data, [-]
- Returns
- methodslist[str]
List of methods which can be used to calculate Nu with the given inputs
Examples
>>> Nu_horizontal_cylinder_methods(0.72, 1E7)[0] 'Morgan'
- ht.conv_free_immersed.Nu_horizontal_plate_McAdams(Pr, Gr, buoyancy=True)[source]¶
Calculates the Nusselt number for natural convection above a horizontal plate according to the McAdams [1] correlations. The plate must be isothermal. Four different equations are used, two each for laminar and turbulent; the two sets of correlations are required because if the plate is hot, buoyancy lifts the fluid off the plate and enhances free convection whereas if the plate is cold, the cold fluid above it settles on it and decreases the free convection.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Returns
- Nufloat
Nusselt number with respect to length, [-]
References
- 1
McAdams, William Henry. Heat Transmission. 3E. Malabar, Fla: Krieger Pub Co, 1985.
Examples
>>> Nu_horizontal_plate_McAdams(5.54, 3.21e8, buoyancy=True) 181.73121274384457 >>> Nu_horizontal_plate_McAdams(5.54, 3.21e8, buoyancy=False) 55.44564799362829
>>> Nu_horizontal_plate_McAdams(.01, 3.21e8, buoyancy=True) 22.857041558492334 >>> Nu_horizontal_plate_McAdams(.01, 3.21e8, buoyancy=False) 11.428520779246167
- ht.conv_free_immersed.Nu_horizontal_plate_Rohsenow(Pr, Gr, buoyancy=True)[source]¶
Calculates the Nusselt number for natural convection above a horizontal plate according to the Rohsenow, Hartnett, and Cho (1998) [1] correlations. The plate must be isothermal. Three different equations are used, one each for laminar and turbulent for the heat transfer happening at upper surface case and one for the case of heat transfer happening at the lower surface.
The lower surface correlation is recommened for the laminar flow regime. The two different sets of correlations are required because if the plate is hot, buoyancy lifts the fluid off the plate and enhances free convection whereas if the plate is cold, the cold fluid above it settles on it and decreases the free convection.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Returns
- Nufloat
Nusselt number with respect to length, [-]
Notes
The characteristic length suggested for use is as follows, with a and b being the length and width of the plate.
References
- 1
Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat Transfer, 3E. New York: McGraw-Hill, 1998.
Examples
>>> Nu_horizontal_plate_Rohsenow(5.54, 3.21e8, buoyancy=True) 175.91054716322836 >>> Nu_horizontal_plate_Rohsenow(5.54, 3.21e8, buoyancy=False) 35.95799244863986
- ht.conv_free_immersed.Nu_horizontal_plate_VDI(Pr, Gr, buoyancy=True)[source]¶
Calculates the Nusselt number for natural convection above a horizontal plate according to the VDI [1] correlations. The plate must be isothermal. Three different equations are used, one each for laminar and turbulent for the heat transfer happening at upper surface case and one for the case of heat transfer happening at the lower surface. The lower surface correlation is recommened for the laminar flow regime. The two different sets of correlations are required because if the plate is hot, buoyancy lifts the fluid off the plate and enhances free convection whereas if the plate is cold, the cold fluid above it settles on it and decreases the free convection.
- Parameters
- Prfloat
Prandtl number with respect to fluid properties [-]
- Grfloat
Grashof number with respect to fluid properties and plate - fluid temperature difference [-]
- buoyancybool, optional
Whether or not the plate’s free convection is buoyancy assisted (hot plate) or not, [-]
- Returns
- Nufloat
Nusselt number with respect to length, [-]
Notes
The characteristic length suggested for use is as follows, with a and b being the length and width of the plate.
The buoyancy enhanced cases are from [2]; the other is said to be from [3], although the equations there not quite the same and do not include the Prandtl number correction.
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd ed. 2010 edition. Berlin ; New York: Springer, 2010.
- 2
Stewartson, Keith. “On the Free Convection from a Horizontal Plate.” Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 9, no. 3 (September 1, 1958): 276-82. https://doi.org/10.1007/BF02033031.
- 3
Schlunder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1987.
Examples
>>> Nu_horizontal_plate_VDI(5.54, 3.21e8, buoyancy=True) 203.89681224927565 >>> Nu_horizontal_plate_VDI(5.54, 3.21e8, buoyancy=False) 39.16864971535617
- ht.conv_free_immersed.Nu_sphere_Churchill(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a sphere according to the Churchill [1] correlation. Sphere must be isothermal.
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- Returns
- Nufloat
Nusselt number, [-]
Notes
Although transition from laminar to turbulent is discrete in reality, this equation provides a smooth transition in value from laminar to turbulent. Checked with the original source.
Good for Ra < 1E13. Limit of Nu is 2 at low Grashof numbers.
References
- 1
Schlunder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1987.
Examples
>>> Nu_sphere_Churchill(.7, 1E7) 25.670869440317578
- ht.conv_free_immersed.Nu_vertical_cylinder(Pr, Gr, L=None, D=None, Method=None)[source]¶
This function handles choosing which vertical cylinder free convection correlation is used. Generally this is used by a helper class, but can be used directly. Will automatically select the correlation to use if none is provided; returns None if insufficient information is provided.
Preferred functions are ‘Popiel & Churchill’ for fully defined geometries, and ‘McAdams, Weiss & Saunders’ otherwise.
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number with respect to cylinder height [-]
- Lfloat, optional
Length of vertical cylinder, [m]
- Dfloat, optional
Diameter of cylinder, [m]
- Returns
- Nufloat
Nusselt number, [-]
- Other Parameters
- Methodstring, optional
A string of the function name to use, as in the dictionary vertical_cylinder_correlations
Examples
>>> Nu_vertical_cylinder(0.72, 1E7) 30.562236756513943
- ht.conv_free_immersed.Nu_vertical_cylinder_Al_Arabi_Khamis(Pr, Gr, L, D, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to [1], also as presented in [2] and [3].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number with respect to cylinder height [-]
- Lfloat
Length of vertical cylinder, [m]
- Dfloat
Diameter of cylinder, [m]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection, [-]
- Returns
- Nufloat
Nusselt number, [-]
Notes
For air. Local Nusselt number results also given in [1]. D from 12.75 to 51 mm; H from 300 to 2000 mm. Temperature kept constant by steam condensing.
If outside of range, no warning is given. Applies for range of:
References
- 1(1,2)
Al-Arabi, M., and M. Khamis. “Natural Convection Heat Transfer from Inclined Cylinders.” International Journal of Heat and Mass Transfer 25, no. 1 (January 1982): 3-15. doi:10.1016/0017-9310(82)90229-0.
- 2
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 3
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Al_Arabi_Khamis(.71, 2E10, 10, 1) 280.39793209114765
- ht.conv_free_immersed.Nu_vertical_cylinder_Carne_Morgan(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], as presented in [3] and [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Cylinder of diameters 0.475 cm to 7.62 cm, L/D from 8 to 127. Isothermal boundary condition was assumed, but not verified. Transition between ranges is not smooth. If outside of range, no warning is given. The higher range of [1] is not shown in [3], and the formula for the first is actually for the second in [3].
References
- 1(1,2)
J. B. Carne. “LIX. Heat Loss by Natural Convection from Vertical Cylinders.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24, no. 162 (October 1, 1937): 634-53. doi:10.1080/14786443708565140.
- 2
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3(1,2,3)
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Carne_Morgan(.7, 2E8) 204.31470629065677
- ht.conv_free_immersed.Nu_vertical_cylinder_Eigenson_Morgan(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], presented in [3] and in more detail in [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Author presents results as appropriate for both flat plates and cylinders. Height of 2.5 m with diameters of 2.4, 7.55, 15, 35, and 50 mm. Another experiment of diameter 58 mm and length of 6.5 m was considered. Cylinder of diameters 0.475 cm to 7.62 cm, L/D from 8 to 127.Transition between ranges is not smooth. If outside of range, no warning is given. Formulas are presented similarly in [3] and [4], but only [4] shows the transition formula.
References
- 1
Eigenson L (1940). Les lois gouvernant la transmission de la chaleur aux gaz biatomiques par les parois des cylindres verticaux dans le cas de convection naturelle. Dokl Akad Nauk SSSR 26:440-444
- 2
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3(1,2)
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4(1,2,3)
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Eigenson_Morgan(0.7, 2E10) 230.55946525499715
- ht.conv_free_immersed.Nu_vertical_cylinder_Griffiths_Davis_Morgan(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], as presented in [3] and [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Cylinder of diameter 17.43 cm, length from 4.65 to 263.5 cm. Air as fluid. Transition between ranges is not smooth. If outside of range, no warning is given.
References
- 1
Griffiths, Ezer, A. H. Davis, and Great Britain. The Transmission of Heat by Radiation and Convection. London: H. M. Stationery off., 1922.
- 2
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Griffiths_Davis_Morgan(.7, 2E10) 327.6230596100138
- ht.conv_free_immersed.Nu_vertical_cylinder_Hanesian_Kalish_Morgan(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], also as presented in [3] and [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- Returns
- Nufloat
Nusselt number, [-]
Notes
For air and fluoro-carbons. If outside of range, no warning is given. Laminar range only!
References
- 1
Hanesian, D. and Kalish, R. “Heat Transfer by Natural Convection with Fluorocarbon Gases.” IEEE Transactions on Parts, Materials and Packaging 6, no. 4 (December 1970): 147-148. doi:10.1109/TPMP.1970.1136270.
- 2
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Hanesian_Kalish_Morgan(.7, 1E7) 18.014150492696604
- ht.conv_free_immersed.Nu_vertical_cylinder_Jakob_Linke_Morgan(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], as presented in [3] and [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Cylinder of diameter 3.5 cm, length from L/D = 4.3. Air as fluid. Transition between ranges is not smooth. If outside of range, no warning is given. Results are presented rounded in [4], and the second range is not shown in [3].
References
- 1
Jakob, M., and Linke, W., Warmeubergang beim Verdampfen von Flussigkeiten an senkrechten und waagerechten Flaschen, Phys. Z., vol. 36, pp. 267-280, 1935.
- 2
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3(1,2)
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4(1,2)
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Jakob_Linke_Morgan(.7, 2E10) 310.90835207860454
- ht.conv_free_immersed.Nu_vertical_cylinder_Kreith_Eckert(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], also as presented in [3], [4], and [5].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Transition between ranges is not smooth. If outside of range, no warning is given.
References
- 1
Eckert, E. R. G., Thomas W. Jackson, and United States. Analysis of Turbulent Free-Convection Boundary Layer on Flat Plate. National Advisory Committee for Aeronautics, no. 2207. Washington, D.C.: National Advisoty Committee for Aeronautics, 1950.
- 2
Kreith, Frank, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage, 2010.
- 3
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 4
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 5
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Kreith_Eckert(.7, 2E10) 240.25393473033196
- ht.conv_free_immersed.Nu_vertical_cylinder_McAdams_Weiss_Saunders(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] and [2] correlated by [3], as presented in [4], [5], and [6].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- ——-
- Nufloat
Nusselt number, [-]
Notes
Transition between ranges is not smooth. If outside of range, no warning is given. For ranges under 10^4, a graph is provided, not included here.
References
- 1
Weise, Rudolf. “Warmeubergang durch freie Konvektion an quadratischen Platten.” Forschung auf dem Gebiet des Ingenieurwesens A 6, no. 6 (November 1935): 281-92. doi:10.1007/BF02592565.
- 2
Saunders, O. A. “The Effect of Pressure Upon Natural Convection in Air.” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 157, no. 891 (November 2, 1936): 278-91. doi:10.1098/rspa.1936.0194.
- 3
McAdams, William Henry. Heat Transmission. 3E. Malabar, Fla: Krieger Pub Co, 1985.
- 4
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 5
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 6
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_McAdams_Weiss_Saunders(.7, 2E10) 313.31849434277973
- ht.conv_free_immersed.Nu_vertical_cylinder_Popiel_Churchill(Pr, Gr, L, D)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to [1], also presented in [2].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number with respect to cylinder height [-]
- Lfloat
Length of vertical cylinder, [m]
- Dfloat
Diameter of cylinder, [m]
- Returns
- Nufloat
Nusselt number, [-]
Notes
For 0.01 < Pr < 100. Requires a vertical flat plate correlation. Both [2], [3] present a power of 2 instead of 0.5 on the 32 in the equation, but the original has the correct form.
References
- 1
Popiel, C. O., J. Wojtkowiak, and K. Bober. “Laminar Free Convective Heat Transfer from Isothermal Vertical Slender Cylinder.” Experimental Thermal and Fluid Science 32, no. 2 (November 2007): 607-613. doi:10.1016/j.expthermflusci.2007.07.003.
- 2
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 3
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Popiel_Churchill(0.7, 1E10, 2.5, 1) 228.89790055149896
- ht.conv_free_immersed.Nu_vertical_cylinder_Touloukian_Morgan(Pr, Gr, turbulent=None)[source]¶
Calculates Nusselt number for natural convection around a vertical isothermal cylinder according to the results of [1] correlated by [2], as presented in [3] and [4].
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- turbulentbool or None, optional
Whether or not to force the correlation to return the turbulent result; will return the laminar regime if False; leave as None for automatic selection
- Returns
- Nufloat
Nusselt number, [-]
Notes
Cylinder of diameters 2.75 inch, with heights of 6, 18, and 36.25 inch. Temperature was controlled via multiple separately controlled heating sections. Fluids were water and ethylene-glycol. Transition between ranges is not smooth. If outside of range, no warning is given. [2], [3], and [4] are in complete agreement about this formulation.
References
- 1
Touloukian, Y. S, George A Hawkins, and Max Jakob. Heat Transfer by Free Convection from Heated Vertical Surfaces to Liquids. Trans. ASME 70, 13-18 (1948).
- 2(1,2)
Morgan, V.T., The Overall Convective Heat Transfer from Smooth Circular Cylinders, in Advances in Heat Transfer, eds. T.F. Irvin and J.P. Hartnett, V 11, 199-264, 1975.
- 3(1,2)
Popiel, Czeslaw O. “Free Convection Heat Transfer from Vertical Slender Cylinders: A Review.” Heat Transfer Engineering 29, no. 6 (June 1, 2008): 521-36. doi:10.1080/01457630801891557.
- 4(1,2)
Boetcher, Sandra K. S. “Natural Convection Heat Transfer From Vertical Cylinders.” In Natural Convection from Circular Cylinders, 23-42. Springer, 2014.
Examples
>>> Nu_vertical_cylinder_Touloukian_Morgan(.7, 2E10) 249.72879961097854
- ht.conv_free_immersed.Nu_vertical_cylinder_methods(Pr, Gr, L=None, D=None, check_ranges=True)[source]¶
This function returns a list of correlation names for free convetion to a vertical cylinder.
The functions returned are ‘Popiel & Churchill’ for fully defined geometries, and ‘McAdams, Weiss & Saunders’ otherwise.
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number with respect to cylinder height [-]
- Lfloat, optional
Length of vertical cylinder, [m]
- Dfloat, optional
Diameter of cylinder, [m]
- check_rangesbool, optional
Whether or not to return only correlations suitable for the provided data, [-]
- Returns
- methodslist[str]
List of methods which can be used to calculate Nu with the given inputs
Examples
>>> Nu_vertical_cylinder_methods(0.72, 1E7)[0] 'McAdams, Weiss & Saunders'
- ht.conv_free_immersed.Nu_vertical_plate_Churchill(Pr, Gr)[source]¶
Calculates Nusselt number for natural convection around a vertical plate according to the Churchill-Chu [1] correlation, also presented in [2]. Plate must be isothermal; an alternate expression exists for constant heat flux.
- Parameters
- Prfloat
Prandtl number [-]
- Grfloat
Grashof number [-]
- Returns
- Nufloat
Nusselt number with respect to height, [-]
Notes
Although transition from laminar to turbulent is discrete in reality, this equation provides a smooth transition in value from laminar to turbulent. Checked with the original source.
Can be applied to vertical cylinders as well, subject to the criteria below:
References
- 1
Churchill, Stuart W., and Humbert H. S. Chu. “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate.” International Journal of Heat and Mass Transfer 18, no. 11 (November 1, 1975): 1323-29. doi:10.1016/0017-9310(75)90243-4.
- 2(1,2)
Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
Examples
From [2], Example 9.2, matches:
>>> Nu_vertical_plate_Churchill(0.69, 2.63E9) 147.16185223770603